Gluteus Maximus Exercise: Training in Multiple Planes

The gluteus maximus is the most powerful hip extensor.  This is important for functional activities performed in one plane such as walking, running, and climbing stairs.  However, this muscle also has important functions outside of straight ahead planes of movement.  The gluteus maximus also helps control balance and generate power in other planes.  Rotational and lateral movements in everyday life and sport require important contributions from the gluteus maximus.

Training the gluteus maximus should incorporate single-plane hip extension exercises and exercises in multiple planes.  Single-plane exercises such as the squat and hip hinge do not fully develop the glutes.  Training programs should also include exercises with rotation of the trunk or lower body on one leg.  These types of exercises prepare athletes for changes or direction, throwing, and jumping from one leg.   Performance improvements and reduced risk for injury often occur with long-term training in multiple planes.  The five exercises included in this article are only examples.  Many other exercises can be adapted to train the entire body with rotational movements.

Crossover Step Up

The crossover step up helps expose and improve any side to side difference in gluteus maximus strength.  Stand to the side with your left leg next to an elevated step or box.  Cross your right foot in front and step up onto the box.  Keep your hips square throughout the exercise.  Next, cross your right foot behind the left while stepping down to briefly touch the floor on the opposite side.  When descending think about sitting back into the hips.   Reverse the movement in the opposite direction.  Perform the exercise slowly with control.   The challenge of the exercise can be increased by holding a dumbbell or kettle bell in the hands or close to the chest.

1-Leg RDL

The single-leg Romanian dead lift (RDL) is a single-leg exercises which requires stabilization of the trunk on the lower limb in multiple planes.  These exercise begins by standing on one leg with the opposite hip and knee extended.  The weight bearing knee can be slightly bent throughout the exercise.   Initiate the movement by slowly flexing at the hip, keeping the back straight.  The non-weight bearing leg extends straight back behind the body.  Both the descending and ascending parts of the exercise should be performed in a slow and controlled manner.   Also, maintain control and the position of the weight bearing leg during the exercise.   Perform 8-10 repetitions on one leg before switching sides.   The challenge of the exercise can be increased by holding a dumbbell or kettle bell in the hand on the side of the swinging leg.

Transverse Lunge

The transverse lunge starts standing with the feet near each other and hands on the hips.  Throughout the exercise the trunk is maintained in an upright position, so the knee and hip of the lunging leg can be flexed to 90°. This prevents the knee from moving forward past the toes.  Also, the knee remains over the toes so it does not cave inwards into valgus.  During the transverse lunge, the body is rotated 135° towards the lunging side.  This involves twisting behind the body and lunging in one motion.  Add load by holding a dumbbell or kettlebell in the hand opposite the lunging leg or against the chest.  This exercise shows high activation of both the gluteus maximus and gluteus medius.

Skater Squat

The skater squat introduces rotation of the trunk on the lower limb.  The exercise begins by standing on one leg and performing a squat to a comfortable depth.  The depth is determined by the ability to maintain balance and good control of the trunk and entire lower extremity.  The non-weight bearing leg extends at the hip and flexes at the knee. The torso slightly rotates and the arms swing reciprocally as if skating.  The toe of the non-weight bearing leg can touch the floor between repetitions if needed.  Hold the downward position for 2 seconds then return to the starting position.  Add load by placing a resistance band around the thighs just above the knees.

Rotational 1-Leg Squat

 The rotational 1-leg squat is a progression of the skater squat.  Both exercises have a rotational component to the squat.  This exercise further challenges the balance and stability of the hip.  Begin by balancing on one leg holding a medicine ball in both hands.  The non-weight bearing knee and hip flex to approximately 30°. Slowly lower toward the floor being sure to maintain control of the trunk and supporting leg.  The depth of the squat is determined by the ability to maintain balance and control the movement.  Rotate the hands and medicine ball upwards and towards the weight bearing leg as you perform the squat.  Return to the starting position and keep the knees over the toes to prevent knee valgus throughout the exercise.

Glutues Maximus Exercise: Closing Thoughts

Gluteus maximus weakness is common in those with chronic back pain, hip bursitis, hip arthritis, knee arthritis, and runner’s knee (patellofemoral pain).  Training the glutes primary function of hip extension is important but often not enough for most demands of sport and everyday life.  These five exercises are challenging and not for everyone.  If you are unable to maintain balance and stability on one leg try other exercises first (basic gluteus maximus exercises).   If you are still unsure how to start, contact your physical therapist for help.


Bulgarian Split Squat Variations

The rear-foot-elevated or Bulgarian, split squat is an excellent exercise to train the lower body for sport or everyday life.  It is unclear where how this exercise received it’s name but this is of little importance.  The split or asymmetrical stance of the lower body introduces unique deands on the muscles and nervous system.  Acceleration, deceleration, change of direction, sprinting and jumping all require stability of the lower body in similar positions.   Elevating the rear foot increases the difficulty by allowing a deeper squat.  The Bulgarian split squat trains the hip to support the upper body while also controlling the knee position in an athletic stance.

A traditional squat is performed with the feet placed symmetrically side by side.  This creates challenges in primarily one plane.  The Bulgarian split squat is performed with a narrow split stance creating challenges in multiple planes.  Raising the rear leg on an elevated surface shifts the load to the front leg.  The front leg assumes approximately 85% of the total load.

There are many variations to the Bulgarian split squat.  Progressions and regressions can be tailored for the beginner or advanced lifter.  The purpose of this article is to describe several of these modifications.  The Bulgarian split squat can be modified so those new to strength training can incorporate the exercise.  The advanced progressions are best suited for athletes or those with several years of training experience.  The exercise can be modified to challenge balance and stability using lighter loads.  It can also be performed with heavy loads.  Under these conditions, maximal strength development is emphasized similar to training with common multi-joint exercises such as the back squat.

Muscles Involved with the Bulgarian Split Squat

The main lower body muscles involved in the Bulgarian split squat is the quadriceps, hamstrings, and gluteus maximus.  The quadriceps is the first muscle to fatigue, especially when heavier loads are used.  This then requires the gluteus maximus to compensate.  The gluteus medius and minimus are involved to maintain proper positioning of the pelvis and balance. The hip rotators are recruited in order to control the inward or outward movement of the thigh and knee.  The ankle muscles are highly active in order to maintain balance in the narrow stance. The abdominals and low back muscles help maintain a neutral spine position and balance.

Set-Up and Positioning

Taking time to position yourself before the movement will allow for proper performance of the exercise.  Assume a split squat stance with the trail leg just in front of a support box/bench on the floor. While shifting the weight toward the lead foot, place the top of the trail foot on the support box/bench.  The distance from the lead foot to the trail foot support is approximately the length of one leg.  Adjust the support box/ bench distance so the lead knee is directly above the toes. The trail leg support can range from approximately 6 inches to knee height.  This may require some experimentation.  Start with a lower height and adjust as needed.  For stability and balance, the top of the trail foot should remain in contact with the support box/bench throughout the exercise.  The width between the front and trail leg is approximately hip width.

TRX-Assisted Bulgarian Split Squat

Once proper set-up has been achieved grasp the suspension trainer in both hands.  Bend the elbows and hold the straps close to the chest.  This will assist with maintaining proper balance and a vertical position of the trunk.  Maintain this vertical trunk throughout the exercise.  A forward lean is difficult to control with the split stance and rear foot elevated.  Keep the weight of the lead foot distributed in the middle of the foot or near the heel.  Perform the movement by “sitting back” so the trunk remains vertical and the lead knee does not track excessively past the toes. It is acceptable to have the knee pass slightly ahead of the toes.  Lower the trail knee only to a position 1-2 inches above the floor.  Complete the desired number of repetitions on one leg before switching legs.

Bodyweight Bulgarian Split Squat

For many, the weight of the body is enough to provide a training effect.  Progressing away from using the suspension trainer increases balance and stability challenges.  Place the hands on the hips or arms across the chest.  If you are unable to perform the exercise without the arms in these positions you many lack adequate balance.  If this is the case, regress back to the TRX-Assisted exercise or try holding two light dumbbells with the arms at the sides.

Kettlebell (Goblet) Bulgarian Split Squat

There are a few advantages to performing the Bulgarian split squat with a kettlebell held at the chest.  First, this promotes a vertical position of the trunk.  Other variations, such as holding dumbbells at the side of the body or a barbell on the back, require the trunk to slightly dip forward.  Second, the kettlebell helps activate the core musculature and cue proper positioning of the rib cage on the pelvis.  It is important to stack the lower rib cage on top of the pelvis.  The abdominal muscles are primarily responsible for this.

2-Arm Dumbbell Bulgarian Split Squat

Holding two dumbbells to the side of the body lowers the center of mass.  For some, this improves balance and stability compared to the bodyweight exercise.  Start with light loads and progress as strength improves. If you prefer, try holding two kettlebells instead of the dumbbells.

1-Arm Dumbbell Bulgarian Split Squat

Holding a dumbbell in one hand increases balance and stability challenges.  Hold the dumbbell in the hand on the side of the trail leg.  This will increase activity to the hip musculature, especially the gluteus medius of the lead leg.  This exercise is more challenging than it looks.

TRX Bulgarian Split Squat

This variation is performed with the trail foot placed in the suspension trainer loop. Position the suspension loop so the trail lower leg is parallel to the floor.  Maintain the trunk in a vertical position.  Maintain the hands on the hips.  The knee of the lead leg should not track excessively past the toes.  Compared to the bodyweight split squat, this exercise shows greater activation of the hamstrings, adductors, gluteus maximus, and gluteus medius.  The suspended position increases stability and balance challenges.  This is a more demanding exercise for the hip muscles.  It is a progression from the bodyweight Bulgarian split squat.  To further increase the challenge, try holding a dumbbell in the hand on the side of trail leg.

Barbell Bulgarian Split Squat

Performing the exercise with a barbell allows for the progression of the load for strength development.  The barbell also causes the trunk to angle slightly forward to support the load.  Before positioning the bar, pull the shoulder blades back.  Place the bar on the base of the neck resting over the trapezius muscles. Tuck the elbows to your side and maintain the retracted shoulder blade position.  With barbell training, heavier loads and fewer repetitions are optimal.  Start with a weight which allows you to perform 6 to 8 quality repetitions.  As always, focus first on proper technique before progressing load on the bar.

Closing Thoughts

The Bulgarian split squat is an excellent exercise for rehabilitation, injury prevention, and strength development.  This exercise requires stability in multiple planes and challenges the hip muscles to control the position of the lower limb.  Performance in many sports involves lower-body, weight-bearing skills in positions similar to the split squat. Sprinting, change of direction, throwing, and kicking require the transfer of forces from one leg in a similar fashion.  If you are unsure about how to best incorporate the Bulgarian split squat, give your physical therapist or strength coach a call.

Gluteus Medius Exercise: Advanced Progressions

Athletes are required to perform explosive powerful movements during sport.  The hip muscles, including the gluteus medius, help generate and transfer forces during sport-specific activities such as running, cutting, and throwing.  These types of athletic demands require high intensity training in the gym.  Gluteus medius exercise which emphasize multiple planes of movement in single-leg or asymmetrical stances are advantageous for these demands.

The advanced exercise progressions included here should first be performed in a slow and controlled manner with an emphasis on technique.  As technique becomes adequate, the speed of movement and load can be increased.  Under any conditions, control of the movement and body positions are extremely important.  Remember, the primary function of the gluteus medius is to stabilize and control the position of the pelvis.  This is mandatory for the rest of the body to generate, transfer, and dissipate forces optimally.

Skater Squat

The skater squats begins by standing on one leg and performing a squat to a comfortable depth.  The depth is determined by the ability to maintain balance and good control of the trunk and entire lower extremity.  The non-weight bearing leg extends at the hip and flexes at the knee. The torso slightly twists and the arms swing reciprocally as if skating.  The toe of the non-weight bearing leg can touch the floor between repetitions if needed.  Hold the downward position for 2 seconds then return to the starting position.   Challenge to the gluteus medius can be increased by placing a resistance band around the thighs just above the knees.

Transverse Lunge

The transverse lunge starts standing with the feet near each other and hands on the hips.  Throughout the exercise the trunk is maintained in an upright position, so the knee and hip of the lunging leg can be flexed to 90°. This prevents the knee from moving forward past the toes.  Also, the knee remains over the toes so it does not cave inwards into valgus.  During the transverse lunge, the body is rotated 135° towards the lunging side.  This involves twisting behind the body and lunging in one motion.   Challenge to the gluteus medius can be increased by holding a dumbbell or kettlebell in the hand opposite the lunging leg.

Rear Foot Elevated Split Squat

The rear foot elevated, or Bulgarian, split squat is an excellent exercise to target the gluteus maximus, gluteus medius, quadriceps, and hamstring muscles.  For this exercise, the rear foot is placed up on a 6 to 12 inch step or box.  The supporting leg should be positioned approximately one leg length in front of the box or step.  This may need to be adjusted based on comfort and balance.  However, it is important that the hip and knee of the front leg is able to flex to 90 degrees during the movement.

It is also important to maintain good upper body posture with a natural curve in the low back and the chest up.  This position should be maintained during the descent and ascent of the movement. Excessive trunk flexion or side bending are common errors.  The front knee should not move forward past the toes.  The knee should remain over the toes so it does not cave inwards into valgus.  Perform 8 to 10 slow and controlled repetitions before switching sides to the other leg.  Challenge to the gluteus medius can be increased by holding a dumbbell or kettlebell in the hand opposite the front leg.

Lateral Step Down

The step down exercise begins with the hands on the hips standing with one leg on the side of a step or 8-inch high box.  Maintain balance on 1 leg and slowly squat to lower the heel of the other leg toward floor.  Gently tap the heel and return to the start position.  Throughout the exercise the trunk is maintained in an upright position.  Avoid leaning the trunk to the side or waving the arms.  The knee should not move forward past the toes.  Also, the knee should remain over the toes so it does not cave inwards into valgus.  Perform 8 to 10 slow and controlled repetitions before switching sides to the other leg.

1-Leg Squat

 If the lateral step down can be performed with proper form, the next challenge is to progress to performing a single-leg squat.  Begin by balancing on one leg with the hands on the hips.  The non-weight bearing knee and hip are flexed in front to approximately 30°. Slowly lower toward the floor being sure to maintain control of the trunk and supporting leg.  The depth of the squat is determined by the ability to maintain balance and control the movement.  Return to the starting position and keep the knees over the toes to prevent knee valgus throughout the exercise.   This exercise can be performed with or without the assist of a chair.  Many times the chair is needed initially until control and strength improve.  Challenge to the gluteus medius can be increased by holding a dumbbell or kettl bell in the hand opposite the supporting leg.

Closing Thoughts

These five exercises require practice to perfect.  Often, a trainer or physical therapist is needed to coach an individual through these types of exercises.  These are higher level exercises which are not for everyone.  However, mastering these types of dynamic movements often translate to improved coordination, strength, and power on heavier compound lifts such as the squat or deadlift.  Team sport athletes often see improvements in explosiveness and agility on the field.  Unfortunately, many become frustrated with the amount of practice and effort it takes to perform these types of exercises.  If needed, regress back to perform less challenging exercises in non-weight bearing (here) or weight bearing positions (here).  This is all part of the process.  Be patient and stick with it and you will see results down the road.

Five Exercises to Train the Abdominal Muscles

Abdominal muscle weakness and poor control of the trunk (or “core”) can negatively influence athletic performance and activities of daily living.  Poor trunk muscle strength has been associated with injuries in baseball players and several other sports.  Also, exercises to improve trunk muscle strength have been shown to improve soccer and distance running performance.  Trunk muscle weakness has also been linked to falls in seniors and low back pain in adults and children.

Exercises to strengthen the abdominal muscles and improve coordination of the trunk should be integrated into a comprehensive total body strength training program.  Training should never focus on any single muscle or body part.  In general, abdominal exercises should start in supported positions, such as supine lying, and progress to more functional positions, such as standing.  Exercises are predominately training for muscular endurance with short sustained holds (8 to 10 seconds) and a progressive number of repetitions.  As exercises become less challenging, the number of repetitions should be increased or the exercise itself should be progressed to a more challenging position.  The five exercises which follow are ordered from the most basic to the most challenging.

Dead Bugs

Begin in a supine lying position with the arms held straight up and the feet off the floor.  The hips and knees should be bent to 90 degrees.  Gently flatten the low back into the floor and maintain this abdominal contraction throughout the exercise.  Simultaneously raise the right arm overhead and extend the left leg without touching down.  Hold this position for several seconds and maintain low back contact with the floor.  Reverse the movement back to the starting position. Then, perform the opposite diagonal pattern with the left arm and right leg.  You should alternate sides with each repetition.  Maintain low back contact with the floor throughout the exercise.

Stability Ball Roll-Outs

Begin in a tall-kneeling position with both hands on the ball.  Roll the hands along the ball until the elbows or upper arm contacts the ball.  The elbows should remain extended as the hands and hips move together.  Engaging the gluteus and abdominal muscles help maintain proper position during the exercise.  As you lower the body towards the floor, maintain a neutral spine position and avoid arching the low back.  Hold this position for several seconds before reversing the movement back to the starting position.

Side Plank with Rotation

Begin in a side-lying position resting on one elbow.  Raise the trunk and knee off the floor until you are fully supported by your elbow and feet.  While maintaining the side plank position, reach up and then under and behind the body with the top hand.  This will induce trunk rotation and challenge the oblique abdominal muscles.  Hold this position for several seconds before reversing the movement back to the starting position.

Half-Kneeling Cable Chop

Assume a half-kneeling position next to a cable column or anchored resistance band.  The kneeling position removes contributions from the lower body and increases the demands on the trunk, pelvis and hip musculature.  From a balanced and upright kneeling position, pull the cable or band diagonally across the body towards the opposite hip.  Maintain a neutral spine and trunk position throughout the exercise.  Avoid rotating the body as your arms pull across the body.  Resisting this movement is what activates the abdominal muscles.  Hold this position for several seconds before reversing the movement back to the starting position.

Lateral Lunge with Press and Reach

This advanced exercise starts from a standing position next to a cable column or anchored resistance band.   Holding the handle or band close to the body; initiate the exercise with a lateral lunge.  Once the lunge position is attained, slowly press the arms straight out in front of the body.  The band or weight will induce a rotational challenge to the trunk muscles.  Resisting this movement is what activates the abdominal muscles.  Next, slowly raise the arms straight overhead while maintaining the lunge position.  Maintain a neutral spine and trunk position throughout the exercise.  Hold this position for several seconds before reversing the movement sequentially back to the starting position.

Closing Thoughts on Abdominal Exercises

Abdominal exercises are one component of a comprehensive exercise program targeting total body muscular strength and physical performance.  Abdominal exercises performed in isolation are rarely successful for improving performance or decreasing pain.  When developing your program, consider these five trunk muscle exercises.   Performing each exercise in a controlled fashion, with a focus on proper technique and muscular endurance will elicit the best results for the long-term.


  1. Chaudhari AMW, Mckenzie CS, Pan X, Onate JA. Lumbopelvic control and days missed because of injury in professional baseball pitchers.  Am J Sports Med. 2014;42(11):2734-2740. doi:10.1177/0363546514545861.
  2. Granacher U, Gollhofer A, Hortoba T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013;43:627-641. doi:10.1007/s40279-013-0041-1.
  3. Reed CA, Ford KR, Myer GD, Hewett TE. The Effects of isolated and integrated “core stability” training on athletic performance measures: A systematic review. Sports Med. 2012;42(8):697-706.

Strength is the Foundation: Getting Stronger Benefits Us All

Muscular strength is defined as the ability to exert a force on an external object or against some type of resistance. Strength may be expressed when hitting a baseball during sport or when standing up from a low chair during everyday life. Strength is required to press a loaded barbell overhead or strength may be needed to carry groceries from the car into the home. Optimizing strength across the lifespan can have profound effects on athletic performance, quality of life, health, and longevity.

Strength & Sports Performance

During sport, athletes exert large forces against gravity (i.e., sprinting or gymnastics), against an opponent (e.g., football) or when manipulating an object (e.g., throwing a baseball). Muscular performance can be a limiting factor in performing any of these athletic endeavors. Power refers to the rate at which force is produced. Stronger athletes produce more force and often do so in much less time. Power is associated with several important sport variables such as sprinting speed, jumping, change of direction, and throwing velocity. Improving muscular strength through resistance training is a sure fire way to improve power and subsequent sports performance.

An athlete’s ability to run, jump and change direction is crucial for success in most sports. Enhancing muscular strength improves these characteristics which often transfer to sport specific skills during competition. Stronger athletes jump higher and further than weaker athletes. Strength may be expressed when an athlete elevates for a rebound in basketball, jumps to spike a ball in volleyball, or dives to catch a ground ball in baseball. Athletes, who produce large forces on the ground, are able to jump higher and further than weaker athletes. This results in a true competitive advantage in many sports.

Stronger athletes are also able to accelerate running speeds over short distances. Elite athletes are able to produce greater forces, with short ground contact times, and with greater stride lengths compared to non-elite athletes. Evidence strongly suggests a correlation between maximal strength and running speed1. Athletes who produce greater amounts of force over a shorter period of time are able to change direction at greater velocities. This is important in basketball or football when attempting elude defenders. Becoming stronger is a no-brainer for any athlete looking to jump higher, run faster, or rapidly change direction during their sport. Lateral lunge variations are an excellent way to improve strength in the frontal plane where many athletic injuries occur.

Strength transfers to performance in both strength-power sports and endurance sports. Stronger cyclists are faster than weaker cyclists. Handball players with greater strength outperform weaker handball players. Stronger sprinters have faster 100-meter times than weaker sprinters. Stronger baseball players possess greater bat speeds and throwing velocities than weaker players. Strength alone does not ensure athletic success, but the evidence is compelling that stronger athletes possess a competitive advantage over weaker athletes in most sports.

Strength & Quality of Life

There has been a steady decline in fitness and muscular strength in children and youth across the world. Research shows greater muscular fitness in school-aged youth (4-19 years)is associated with improved body composition (e.g., decreased body fat), and improved risk factor profiles for heart disease and diabetes2. There is also strong evidence for a positive association between muscle strength and bone health and self-esteem in children2. Therefore, youth physical activity programs which promote muscular strength can have many benefits related to overall health and quality of life.

Sarcopenia refers to the age-related loss of muscle size and strength in older adults. Loss of muscle mass begins at approximately age 25 and progresses to a loss of 30% or more by the age of 80. Loss of muscle mass occurs primarily in type II muscle fibers which are highly responsible for muscle strength and power. Therefore, the rate and magnitude of strength loss usually exceed that of muscle mass by 2-5 times.

Age-related loss of muscle strength and bone mass (osteopenia) are associated with impaired functional mobility, compromised balance, and increased risk of arthritis, joint replacement surgeries, falls, and fractures. All of these factors can substantially diminish the quality of life. Nearly 20% of women and 10 % of men over the age of 65 cannot lift a 10-pound weight or kneel down on the floor. The age-related loss of strength is also associated with an inability to live independently and premature death3.

Maintaining muscle strength is a key strategy that leads to healthy aging. Sedentary behavior and physical inactivity are key drivers of sarcopenia and can accelerate the loss of muscle mass and strength. Maintenance of physical activity and engagement in a regular strength training program can diminish or even prevent these age-related changes. Pulling exercises or row variations are great for strengthening the upper body and core musculature.

The Importance of Strength for Optimal Health & Longevity

It is well-known that aerobic fitness is associated with decreased risk for chronic disease and premature death. The health benefits of exercise programs which target muscular strength is less known to the general public. A 2017 study published in the American Journal of Epidemiology showed resistance training reduced the risk of all-cause and cancer-related death to a greater degree than aerobic exercise4. There is now a growing body of evidence suggesting poor muscular strength is associated with death from all causes in both healthy and diseased populations

Another review in the European Journal of Internal Medicine reported a reduced risk for all-cause mortality with increased levels of muscular strength5. This association persists even after controlling for age, body fat, smoking, alcohol intake, medications, other health conditions, physical activity, and levels of cardiorespiratory fitness. Handgrip strength has been associated with survival and long-term outcomes in patients with cancer. Muscular strength has also been shown to be associated with long-term outcomes in patients with heart disease.

The health and mortality benefits of muscular strength appear to be related to multiple physiological mechanisms. This includes improved blood pressure, blood lipids, and body composition. Reduced systemic inflammation and reduction in insulin resistance have also been linked to improved muscular strength and mortality. Based on the available evidence showing a strong association with muscular strength and mortality, adults should perform muscle-strengthening exercises at least 2 days per week in order to reduce mortality risk. For most, basic lower body exercises such as squats and hip hinges are great places to start with a strengthening program.


We continuously perform activities during sport or our daily routine which require the expression of muscular strength. To a certain extent, muscular strength can be inherited. However, strength will never be optimized and will ultimately decline with age unless strength promoting exercises are undertaken. Optimizing or preserving muscular strength is strongly associated with improved sports performance, improved quality of life, improved physical function, reduced risk for chronic disease, and reduced risk for all-cause death. This should be sufficient evidence for all individuals, regardless of age or health status, to engage in some form of resistance training today.


  1.  Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419-1449. doi:10.1007/s40279-016-0486-0.
  2. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209-1223. doi:10.1007/s40279-014-0196-4.
  3. McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: The importance of skeletal muscle strength for healthy aging. Biogerontology. 2016;17(3):497-510. doi:10.1007/s10522-015-9631-7.
  4. Stamatakis E, Lee I, Bennie J, et al. Does strength promoting exercise confer unique health benefits? A pooled analysis of eleven population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Eur J Intern Med. 2017; Ahead of P:1-37. doi:10.1093/aje/kwx345/4582884.
  5. Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med. 2017;26(5):303-310. doi:10.1016/j.ejim.2015.04.013.

Warm-Up to Optimize Training

Walk into any gym in the area and you are likely to see people who completely neglect the warm-up. Others spend 45 minutes or more on the foam roller, stretching with bands, or torturing themselves with lacrosse balls. So what is the deal with warming-up before a training session? The purpose of the warm-up is to prepare the body, mentally and physically, for the upcoming training session or for competition. When done properly, the warm-up can improve performance and in some instances, may lessen the risk of injury.

The positive effects of any warm-up are best achieved through an active form rather than passive or static stretching techniques. The positive effects of a warm-up can be achieved through temperature-related and non-temperature-related effects. Temperature-related effects include increased muscle temperature, core temperature, enhanced nervous system function, and improved connective tissue flexibility. Non–temperature-related effects include increased blood flow to muscles, improved oxygen consumption, and improved muscle contraction capabilities.

Other physiological and performance benefits of the warm-up include:

  • Faster muscle contraction and relaxation
  • Improvements in the rate of force development
  • Faster reaction time
  • Improvements in muscle strength and power
  • Lowered stiffness in muscles and joints
  • Improved oxygen delivery to working muscles
  • Increased blood flow to working muscles
  • Increased psychological preparedness

The Basic Components of an Effective Warm-Up

There are two basic phases to a well-designed warm-up before the start of a training session. These are the general warm-up and the specific warm-up. The general warm-up typically consists of 5 minutes of slow aerobic activity such as jogging, skipping, or cycling. The aim of this phase is to increase heart rate, blood flow, muscle temperature, respiration rate, and joint mobility. This phase is typically followed by a period of general stretching that aims to replicate the ranges of motion required for the upcoming training session. The specific warm-up

Typically incorporates movements similar to the movements of the athlete’s sport or training session. This should include rehearsal of the skill(s) to be performed. It is recommended the specific warm-up last 10 to 20 minutes with no more than 15 minutes between the end of the warm-up and start of activity (training session or competition).

The warm-up for a game or competition aims to maximize performance in the subsequent event. However, for the training session, in addition to optimizing acute performance during the session, the specific warm-up should contribute to the overall long-term development of the athlete. This is often an ideal time to incorporate individualized corrective exercise into an athlete’s program. For the baseball pitcher this may include rotator cuff activation exercises such as diagonal patterns with resistance bands.

Structuring the Warm-Up to Optimize Short and Long-Term Performance

Effective warm-ups should be thought of as an integral part of any training session, not as a separate entity.  Raise, Activate and Mobilize, and Potentiate (RAMP) is an acronym used to describe a more detailed structure for a warm-up2. This builds on the general and specific structure offering an approach which maximizes both acute and long-term performance.

Raise, refers to increasing the level of several physiological variables and the level of skill of the athlete. This phase is analogous to the general warm-up and aims to elevate body temperature, heart rate, respiration rate, blood flow, and joint mobility through low-intensity activities. General aerobic exercises, such as cycling or the elliptical trainer, are often inserted here. However, it is more beneficial to attempt to simulate the movement patterns of the upcoming activity or develop the movement patterns or skills the athlete will need to utilize within the sport. Instead of treadmill jogging before a squat session, the athlete can perform walking lunges to prepare physically and psychologically. In this way, the training session, from the start of the warm-up, is targeted at key movement patterns and skills and not just aerobic capacity.

Activating and mobilizing refers to the stretching component of a warm-up. Key movement patterns required for athletic performance in both the subsequent session and the athlete’s long-term development are performed. This might include corrective exercise for core stabilization or specific mobility. Static stretching may be incorporated as corrective exercise if specific deficits are identified. Baseball players can consider inserting static stretches for the lats, forearms, or rotator cuff. Any decrement in subsequent strength or power from static stretching is likely very short-lasting1.

Performing dynamic warm-up activities following static stretching will override any small transient performance decrements. The focus of mobility exercise is always on actively moving through a range of motion not static stretching. Dynamic stretching requires a combination of control, stability, and flexibility and more closely relates to the movement requirements an athlete will face in the training session or their sport. Dynamic stretches are extremely time-efficient compared to single muscle static stretches. Prior to overhead pressing with the bar, try warming-up with 20 reps of a door slide exercise or band external rotation to press.

Potentiation refers to the specific warm-up and focuses on the intensity of activities. This phase incorporates specific activities that progress in intensity until the athlete is performing at the intensity required for the training session. The potentiation phase is often omitted from training sessions. It is common to see an athlete proceed from a stretching exercise directly into their first working set of a squat or Olympic lift. This only compromises strength and power output.

There is strong evidence showing high-load dynamic warm-ups enhance subsequent power and strength performance3. The more power necessary for the exercise or activity, the more important the potentiation phase of the warm-up becomes. The objective is to include high-intensity dynamic exercises in order to prepare the nervous system.  Exercises which include short bouts of a high-intensity sprints, jumps or throws are ideal. Again, these warm-up exercises should be targeted to the upcoming session but also address the longer-term requirements of the athlete. A few sets of 2-3 plyometric jumps can be performed before getting under the bar for squats.


Many athletes or fitness enthusiasts are unaware of the optimal structure and performance benefits related to a proper warm-up. The RAMP protocol is a great foundation to structure any warm-up. More importantly, any properly designed warm-up should prepare the body for the subsequent training session and also assist in the long-term development of the athlete. If you are looking for performance gains for your next training sessions and the long-term, get serious about warming-up.


  1. Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41, 1–11.
  2. Haff, G.G., Triplett, N.T. (2016). Essentials of strength training and conditioning (4th ed). Champaign, Ill: Human Kinetics.
  3. McCrary, J. M., Ackermann, B. J., & Halaki, M. (2015). A systematic review of the effects of upper body warm-up on performance and injury. British Journal of Sports Medicine, 49, 935–942.

Strength Training: Reducing Injury in Children

In our last article, we discussed the safety of youth resistance training. In addition to being safe for youth athletes, resistance training can also reduce injury and improve athletic performance. Resistance training has been shown to reduce injuries in adolescents who participate in football, soccer, basketball, and various other sports1-2. Adolescent females are especially vulnerable to knee injuries. Preseason conditioning programs that include plyometric training, resistance training, and jump training significantly reduce knee injuries in female athletes. Also, youth athletes who engage in regular resistance training recover quicker from injuries when they do occur.

When to Incorporate Resistance Training for Children

Youth athletes can benefit from developing fundamental movement skills (e.g., jumping, landing, and throwing) through appropriate fitness conditioning at early ages (6-10 years old). Once fundamental movement skills are mastered, appropriately supervised strength training programs can be initiated to reduce the likelihood of overuse injuries occurring during sport. Resistance training addressing specific risk factors associated with youth-sport injuries (e.g., low fitness, muscle imbalances, and training errors) reduce overuse injuries by as much as 50%1, 3. With early exposure to resistance training, young athletes may be able to prevent the development of deficits which predispose them to injury later in life.

Resistance Training for Youth Non-Athletes

Free-time physical activity among children and adolescents is on the decline. Strength training is beneficial for athletes and children who are not engaged in competitive sports. Physical inactivity is a risk factor for activity-related injuries in children. Youth who participate regularly in age-appropriate fitness programs, which include resistance training, may be less likely to suffer an injury.


Although the total elimination of injuries is unrealistic, appropriately designed conditioning programs that include strength training can help reduce the likelihood of sports- related injuries.  Clearly, incorporating resistance training supervised by qualified professionals is in the best interest of any young athlete looking to minimize risk for injury and improve performance. Our next article will discuss the role of resistance training for improving athletic performance.


  1. Faigenbaum, A., Kraemer, W., Blimkie, C., Jeffreys, I., Micheli, L., Nitka, M., & Rowland, T. (2009). Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. Journal of Strength and Conditioning Research, 23(5), S60–S79.
  2. Faigenbaum, A. D., & Myer, G. D. (2010). Resistance training among young athletes: safety, efficacy and injury prevention effects. British Journal of Sports Medicine, 44, 56–63.
  3. Lloyd, R. S., Faigenbaum, A. D., Stone, M. H., Oliver, J. L., Jeffreys, I., Moody, J. A., … Myer, G. D. (2014). Position statement on youth resistance training: The 2014 international consensus. British Journal of Sports Medicine, 48, 498–505.