Off-Season Baseball Strength and Conditioning: Lessons from the Yankees

November 12, 2017

The winter months are quickly approaching here in the Northeast. For youth baseball players the cold winter is the ideal time to focus on developing muscular strength and explosive power. These physical attributes transfer to the baseball field as quickness, running speed, bat speed, throwing velocity, ball exit velocity, and overall resiliency needed to survive the grind of a full season. Under most circumstances, youth athletes should always be encouraged to participate in multiple sports throughout the year up until about the age of about 15 or 16. Continuing efforts to improve baseball skills, such as hitting, is important for the mature specialized youth athlete. However, baseball performance will never be optimized without a well structured and supervised off-season strength and conditioning program.

Steinbrenner Field, Tampa

Last week I had the unique opportunity to visit the New York Yankees spring training complex in Tampa, Florida. It was a special weekend for a lifelong Yankees fan and strength and conditioning nerd like myself. The Yankees strength and conditioning and sports science staff hosted a group of growth-minded coaches from the National Strength & Conditioning Association. The entire day was tremendous and a humbling learning experience.  Topics included leadership, hill running for baseball players, and programming for off-season strength training. The Yankees staff stressed the importance of a well-structured year-round strength and conditioning program for all players from the rookie leagues up through the majors. The Yankees organization fully expects to win many more World Series trophies and developing their athletes is a big part of their winning plan.

What Makes a Great Baseball Player?

Hitting a baseball is a sequence of coordinated muscle activity involving the hips, torso, and arms. Bat speed is an important factor affecting how hard the ball is hit and how far the ball travels. Training baseball players targets the lower body and explosive torso rotational exercises. Exercises which develop upper body power, lower body power, and torso rotational power, all transfer on the field to improved bat speed. Research also indicates lean body mass, lower body power, sprint speed, and grip strength are closely correlated with baseball-specific performance measures such as total bases, slugging percentage, home runs, and stolen bases. The off-season is the ideal time to train these attributes in baseball players because this is typically the period when the least amount of baseball-specific batting or pitching practice is taking place.

In 2010, researchers from Louisiana Tech University investigated the relationship between player variables and bat speed in 2 groups of high-school baseball players before and after completing a 12-week resistance training program. Both groups completed the same upper and lower body resistance training program and took 100 bat swings 3 days per week. However, one group also performed additional full-body rotational medicine ball exercises. Several body composition and physiological variables, along with bat speed, were assessed before and after the training program.

Researchers found bat speed was associated with greater lean body mass and height. This sounds like Aaron Judge to me. Torso rotational strength was even more closely associated with bat speed in these high school athletes. Lower body power, measured by vertical jump, was also closely associated with bat speed. Finally, lower body strength (measured with 3-repetition maximum squat) and upper body strength (measured with 3-repetition  maximum bench press) were also associated with bat speed. From this research, in order to improve bat speed in baseball players, off-season strength and conditioning programs should target improving lean body mass, rotational power, lower body power, lower body strength, and upper body strength.

The Off-Season Baseball Strength & Conditioning Program

Off-season baseball strength and conditioning focuses on improving total body strength, rotational power, and lower body power. Pitchers also focus some of their efforts on arm care programs in order to prepare for the volume of throwing which places unique stresses on the shoulder and elbow. Pitchers must possess adequate strength in order to develop power and throwing velocity. Programs typically last 10 to 12 weeks with training occurring 3 days per week. Volume and intensity of these programs are progressed and tapered down as the athlete gets closer to pre-season when baseball-specific skill training becomes increasingly important. Resistance training with free weights or cables, plyometric training, and medicine ball training are the cornerstones of the off-season program.

Resistance training has been shown to improve both bat speed and throwing velocity in youth baseball players.  These exercises seek to build foundational strength through movement patterns such as the squat, hinge, and press. However, as previously mentioned, baseball involves a great deal of rotational and diagonal movement which should be heavily incorporated into training. The cable push-pull exercise is great for improving torso rotational strength in the position player or pitcher. Baseball players often exhibit muscle imbalances where the front of the body (anterior chain) is stronger than the back (posterior chain). Therefore, it is common for programs to include a 2 to 1 ratio of pull to push exercises. Training volume with movements such as rows and lifts targeting the posterior chain should be stressed over movements such as presses.

Baseball is also an asymmetrical one-side dominant sport which involves throwing with one arm or batting from the same side of the plate. Barbell training for the squat, deadlift, and sometimes the bench press can be included in a periodized program to improve bilateral strength. However, it is very important for the baseball player to be training unilaterally with dumbbells or kettlebells. Single arm rows, split-stance squats or lunges, and single-arm kettlebell swings are great examples of unilateral exercises.

Power is the product of strength and speed. Power is expressed when throwing, swinging or jumping during the game of baseball. Strength is trained with resistance exercise using heavy loads at slower speeds. Plyometric training involves drills designed using maximal force as quickly as possible. These exercises are important for training the speed component of power. Research from Arizona State University showed complex training utilizing both heavy resistance training and plyometric jump training improved power in baseball players to a greater degree than either resistance or plyometric training alone. Lower body plyometric drills to improve explosive power for the baseball player include box jumps, lateral jumps, and split squat jumps.

Medicine ball training is a form of explosive exercise using rapid force development and transfer from the lower body and torso through the arms. Medicine ball throws are ideal for developing rotational power which is crucial for any baseball player. Twelve weeks of resistance training plus medicine ball training resulted in greater improvements in rotational strength compared to resistance training without medicine ball drills. In another study, 6 weeks of supervised medicine ball training in high school baseball pitchers was shown to result in a 2% increase in throwing velocity. It is very important that athletes are instructed in proper technique during these drills. Performing explosive medicine ball training with improper technique can result in decreased throwing performance or injury. Common medicine ball drills used with baseball players include the squat and throw, perpendicular throw, and hitter’s throw.

Conclusion

The baseball player’s off-season strength and conditioning program should coincide with specialized sports skill practice. However, the off-season is not the time where pitchers should be throwing at high volumes. Youth pitchers should rest from throwing for a minimum of 2 to 4 months per year. The off-season throwing program must be individualized to meet the needs of the athlete. Regardless of the structure of skill practice, the off-season is the ideal time to divert efforts towards improving strength, power, speed, and resiliency. As the off-season progresses and the athlete approaches the pre-season, the focus on strength and conditioning should decrease. At the same time, sport skill training (pitching, hitting, and fielding) increases.

Off-season strength and conditioning for baseball players improves performance through the development of strength, speed, and explosive power. These qualities are the foundation of a long and successful baseball career. Youth athletes should be instructed, supervised, and progressed by trained professionals who have experience with baseball players. The research is clear about how baseball players are built. The New York Yankees have taken notice and put these concepts into practice. Youth baseball players are not miniature professional athletes and should not be trained as such. However, the basic principles used by the Yankees can be applied to youth athletes by trained professionals who understand the science.

References

  1. Dodd, D. J., & Alvar, B. A. (2007). Analysis of acute explosive training modalities to improve lower-body power in baseball players. Journal of Strength & Conditioning Research, 21(4), 1177–1182.
  2. Escamilla, R. F., Ionno, M., DeMahy, S., Fleisig, G. S., Wilk, K. E., Yamashiro, K., … Andrews, J. R. (2012). Comparison of three baseball-specific 6-week training programs on throwing velocity in high school baseball players. Journal of Strength & Conditioning Research, 26(7), 1767–1781.
  3. Hoffman, J., Vazquez, J., Pichardo, N., & Tenenbaum, G. (2009). Anthropometric and performance comparisons in professional baseball players. Journal of Strength & Conditioning Research, 23(8), 2173–2178.
  4. Szymanski, D., Szymanski, J. M., Bradford, J., Schade, R. L., & Pascoe, D. (2007). Effect of twelve weeks of medicine ball training on high school baseball players. Journal of Strength & Conditioning Research, 21(3), 894–901. http://doi.org/10.1519/R-18415.1
  5. Szymanski, D., Szymanski, J., Schade, R., Bradford, T., McIntyre, J., DeRenne, C., & Madsen, N. (2010). The relation between anthropometric and physiological variables and bat velocity of high school baseball players before and after 12 weeks of training. Journal of Strength & Conditioning Research, 24(11), 2933–2943.