Finished Your Physical Therapy: What’s Next?

The day has come.  You’ve dedicated your time and put in the work now you and your physical therapist have decided you’re ready for discharge.  So what happens after you have completed physical therapy?

Some patients leave physical therapy feeling 100% and return to their regular active lifestyle and prior fitness routine.  In many cases, though the patients we see are ones that do not live an active lifestyle and have no prior fitness routine. Some patients may only feel 80% better and insurance benefits or financial limitations will not allow continued care. These patients, in particular, are the ones who may leave therapy feeling uneasy or unsure.  They may have many questions they are asking themselves:

  • What if I never feel 100%?
  • When will I find time to continue the home exercises on my own?
  • How long will I have to continue these exercises for?
  • What if the exercises feel like they aren’t helping me anymore?
  • Will I be disciplined enough to do them?
  • What if the pain starts to come back?
  • What if I stop doing the exercises?

Exercise After Physical Therapy

Chances are if you are asking yourself any of these questions, you may be someone who requires or would benefit from more guidance moving forward.  Ideally, you would benefit from a long-term fitness routine or group exercise program.  If you are someone who did not exercise regularly prior to staring physical therapy there is a good chance that you will not continue to do the exercise once you are done.  The intentions may be good but many people do fall short.  Some people are disciplined self-motivators but many are not.  Also, it is easy enough to say “I can’t find the time” or “life just got in the way”.   Anyone at anytime can find the excuse as to why they haven’t been able to continue with a routine.

Building Healthy Habits

Most of the time patients attend physical therapy for 2 or 3 visits a week for a few weeks, most commonly between 4 and 8 weeks.  Research says it can take 2 months or more (66 days on average) to form a new habit.  It takes repetition for the new behavior pattern to become imprinted in your neural pathways. In fact, research by Kaushal and Rhodes suggests it takes at least 4 gym sessions per week for 6 weeks to establish an exercise habit. That doesn’t mean you can’t develop an exercise habit by going less frequently; it just means it will probably take longer for it to become automatic.

If you have already been attending physical therapy 2-3 times per week DO NOT stop dedicating that time to yourself when you are done. DO NOT take a week off and decide to figure out the next step later. DO NOT lose your momentum! If you know that you are someone who needs that continued guidance and motivation ask your physical therapist to help you find the right exercise program to start with.  Depending on your fitness level, behavior characteristics and health goals there will be options that are better for some than others.  Fitness is a booming business right now and there are plenty of options out there.  Some people don’t know where to start.  Your physical therapist will have a general knowledge of what types of exercises are done at different fitness facilities, however, depending on where you live these places vary.

Local Recommendations

The physical therapists at BSR Physical Therapy have been doing the research locally here in the Manahawkin, NJ area.  We are helping to build a library of long-term fitness options for our patients.  We want you to succeed in your health goals.

Most recently Dr. Amanda Higgins, Morgan Gamble and I attended a barre class at Black Sheep Studios on LBI.  The fitness studio had a welcoming earthy vibe.  We met with one of the owners Devon who was as personable as they come and full of energy.  It only took one class to know that this is a place where you won’t get lost in the numbers as the class sizes are small and intimate and everyone called everyone else by name.  The instructors paid close attention to form and corrective technique which is a must to get the recommendation from a physical therapist.  Their instructor Wendy provides individualized programs for people with the use of pilates transformers which is a hard find in this area.  They also provide a menu of other unique exercise classes that may be the perfect fit for some of you.

This place is one of many that can help you stay on track.  We want to see you succeed with your health and fitness long term.  Let us help you transition from physical therapy to fitness.

-Dr. Amy McMahon

 

Strength is the Foundation: Getting Stronger Benefits Us All

Muscular strength is defined as the ability to exert a force on an external object or against some type of resistance. Strength may be expressed when hitting a baseball during sport or when standing up from a low chair during everyday life. Strength is required to press a loaded barbell overhead or strength may be needed to carry groceries from the car into the home. Optimizing strength across the lifespan can have profound effects on athletic performance, quality of life, health, and longevity.

Strength & Sports Performance

During sport, athletes exert large forces against gravity (i.e., sprinting or gymnastics), against an opponent (e.g., football) or when manipulating an object (e.g., throwing a baseball). Muscular performance can be a limiting factor in performing any of these athletic endeavors. Power refers to the rate at which force is produced. Stronger athletes produce more force and often do so in much less time. Power is associated with several important sport variables such as sprinting speed, jumping, change of direction, and throwing velocity. Improving muscular strength through resistance training is a sure fire way to improve power and subsequent sports performance.

An athlete’s ability to run, jump and change direction is crucial for success in most sports. Enhancing muscular strength improves these characteristics which often transfer to sport specific skills during competition. Stronger athletes jump higher and further than weaker athletes. Strength may be expressed when an athlete elevates for a rebound in basketball, jumps to spike a ball in volleyball, or dives to catch a ground ball in baseball. Athletes, who produce large forces on the ground, are able to jump higher and further than weaker athletes. This results in a true competitive advantage in many sports.

Stronger athletes are also able to accelerate running speeds over short distances. Elite athletes are able to produce greater forces, with short ground contact times, and with greater stride lengths compared to non-elite athletes. Evidence strongly suggests a correlation between maximal strength and running speed1. Athletes who produce greater amounts of force over a shorter period of time are able to change direction at greater velocities. This is important in basketball or football when attempting elude defenders. Becoming stronger is a no-brainer for any athlete looking to jump higher, run faster, or rapidly change direction during their sport. Lateral lunge variations are an excellent way to improve strength in the frontal plane where many athletic injuries occur.

Strength transfers to performance in both strength-power sports and endurance sports. Stronger cyclists are faster than weaker cyclists. Handball players with greater strength outperform weaker handball players. Stronger sprinters have faster 100-meter times than weaker sprinters. Stronger baseball players possess greater bat speeds and throwing velocities than weaker players. Strength alone does not ensure athletic success, but the evidence is compelling that stronger athletes possess a competitive advantage over weaker athletes in most sports.

Strength & Quality of Life

There has been a steady decline in fitness and muscular strength in children and youth across the world. Research shows greater muscular fitness in school-aged youth (4-19 years)is associated with improved body composition (e.g., decreased body fat), and improved risk factor profiles for heart disease and diabetes2. There is also strong evidence for a positive association between muscle strength and bone health and self-esteem in children2. Therefore, youth physical activity programs which promote muscular strength can have many benefits related to overall health and quality of life.

Sarcopenia refers to the age-related loss of muscle size and strength in older adults. Loss of muscle mass begins at approximately age 25 and progresses to a loss of 30% or more by the age of 80. Loss of muscle mass occurs primarily in type II muscle fibers which are highly responsible for muscle strength and power. Therefore, the rate and magnitude of strength loss usually exceed that of muscle mass by 2-5 times.

Age-related loss of muscle strength and bone mass (osteopenia) are associated with impaired functional mobility, compromised balance, and increased risk of arthritis, joint replacement surgeries, falls, and fractures. All of these factors can substantially diminish the quality of life. Nearly 20% of women and 10 % of men over the age of 65 cannot lift a 10-pound weight or kneel down on the floor. The age-related loss of strength is also associated with an inability to live independently and premature death3.

Maintaining muscle strength is a key strategy that leads to healthy aging. Sedentary behavior and physical inactivity are key drivers of sarcopenia and can accelerate the loss of muscle mass and strength. Maintenance of physical activity and engagement in a regular strength training program can diminish or even prevent these age-related changes. Pulling exercises or row variations are great for strengthening the upper body and core musculature.

The Importance of Strength for Optimal Health & Longevity

It is well-known that aerobic fitness is associated with decreased risk for chronic disease and premature death. The health benefits of exercise programs which target muscular strength is less known to the general public. A 2017 study published in the American Journal of Epidemiology showed resistance training reduced the risk of all-cause and cancer-related death to a greater degree than aerobic exercise4. There is now a growing body of evidence suggesting poor muscular strength is associated with death from all causes in both healthy and diseased populations

Another review in the European Journal of Internal Medicine reported a reduced risk for all-cause mortality with increased levels of muscular strength5. This association persists even after controlling for age, body fat, smoking, alcohol intake, medications, other health conditions, physical activity, and levels of cardiorespiratory fitness. Handgrip strength has been associated with survival and long-term outcomes in patients with cancer. Muscular strength has also been shown to be associated with long-term outcomes in patients with heart disease.

The health and mortality benefits of muscular strength appear to be related to multiple physiological mechanisms. This includes improved blood pressure, blood lipids, and body composition. Reduced systemic inflammation and reduction in insulin resistance have also been linked to improved muscular strength and mortality. Based on the available evidence showing a strong association with muscular strength and mortality, adults should perform muscle-strengthening exercises at least 2 days per week in order to reduce mortality risk. For most, basic lower body exercises such as squats and hip hinges are great places to start with a strengthening program.

Conclusion

We continuously perform activities during sport or our daily routine which require the expression of muscular strength. To a certain extent, muscular strength can be inherited. However, strength will never be optimized and will ultimately decline with age unless strength promoting exercises are undertaken. Optimizing or preserving muscular strength is strongly associated with improved sports performance, improved quality of life, improved physical function, reduced risk for chronic disease, and reduced risk for all-cause death. This should be sufficient evidence for all individuals, regardless of age or health status, to engage in some form of resistance training today.

References

  1.  Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419-1449. doi:10.1007/s40279-016-0486-0.
  2. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209-1223. doi:10.1007/s40279-014-0196-4.
  3. McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: The importance of skeletal muscle strength for healthy aging. Biogerontology. 2016;17(3):497-510. doi:10.1007/s10522-015-9631-7.
  4. Stamatakis E, Lee I, Bennie J, et al. Does strength promoting exercise confer unique health benefits? A pooled analysis of eleven population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Eur J Intern Med. 2017; Ahead of P:1-37. doi:10.1093/aje/kwx345/4582884.
  5. Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med. 2017;26(5):303-310. doi:10.1016/j.ejim.2015.04.013.

Resistance Training Reduces Injury in Youth Athletes

In our last article, we discussed the safety of youth resistance training. In addition to being safe for youth athletes, resistance training can also reduce injury and improve athletic performance. Resistance training has been shown to reduce injuries in adolescents who participate in football, soccer, basketball, and various other sports1-2. Adolescent females are especially vulnerable to knee injuries. Preseason conditioning programs that include plyometric training, resistance training, and jump training significantly reduce knee injuries in female athletes. Also, youth athletes who engage in regular resistance training recover quicker from injuries when they do occur.

When to Incorporate Resistance Training for Children

Youth athletes can benefit from developing fundamental movement skills (e.g., jumping, landing, and throwing) through appropriate fitness conditioning at early ages (6-10 years old). Once fundamental movement skills are mastered, appropriately supervised strength training programs can be initiated to reduce the likelihood of overuse injuries occurring during sport. Resistance training addressing specific risk factors associated with youth-sport injuries (e.g., low fitness, muscle imbalances, and training errors) reduce overuse injuries by as much as 50%1, 3. With early exposure to resistance training, young athletes may be able to prevent the development of deficits which predispose them to injury later in life.

Resistance Training for Youth Non-Athletes

Free-time physical activity among children and adolescents is on the decline. Strength training is beneficial for athletes and children who are not engaged in competitive sports. Physical inactivity is a risk factor for activity-related injuries in children. Youth who participate regularly in age-appropriate fitness programs, which include resistance training, may be less likely to suffer an injury.

Conclusion

Although the total elimination of injuries is unrealistic, appropriately designed conditioning programs that include strength training can help reduce the likelihood of sports- related injuries.  Clearly, incorporating resistance training supervised by qualified professionals is in the best interest of any young athlete looking to minimize risk for injury and improve performance. Our next article will discuss the role of resistance training for improving athletic performance.

References

  1. Faigenbaum, A., Kraemer, W., Blimkie, C., Jeffreys, I., Micheli, L., Nitka, M., & Rowland, T. (2009). Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. Journal of Strength and Conditioning Research, 23(5), S60–S79.
  2. Faigenbaum, A. D., & Myer, G. D. (2010). Resistance training among young athletes: safety, efficacy and injury prevention effects. British Journal of Sports Medicine, 44, 56–63. http://doi.org/10.1136/bjsm.2009.068098
  3. Lloyd, R. S., Faigenbaum, A. D., Stone, M. H., Oliver, J. L., Jeffreys, I., Moody, J. A., … Myer, G. D. (2014). Position statement on youth resistance training: The 2014 international consensus. British Journal of Sports Medicine, 48, 498–505. http://doi.org/10.1136/bjsports-2013-092952