What’s the Pointe? Reducing Dance Injury

Dancers require unique strength and flexibility, which other performers and athletes do not.  Because of this, they are prone to injury if not physically prepared for training and performances. One way to reduce incidence of dance injury is to ensure that the dancer is physically and psychologically prepared for pointe work. The exciting part is that there are ways to test whether your dancer is ready to put on those pointe shoes!

In order to be prepared for pointe, she should be over the age of 12 and have several years of dance experience.  Now is when your physical therapist comes in!  You need adequate strength in your feet, as well as flexibility into plantar flexion (pointing your feet).  Additionally, there are dancer specific tests that your PT can assess including the Topple, Saute, and Airplane tests.  For the Topple test, the dancer will perform a single pirouette with good control during the turn as well as the landing.  The Saute test is comprised of a single leg jump performed 16 times consecutively.  The dancer must have good control and form with 8/16 of these jumps.  Lastly, the Airplane test is completing 5 single leg squats while your trunk and back leg are parallel to the floor.  Your therapist will assess the alignment of your lower extremity as you perform this movement.

So before you put on your pointe shoes, see your physical therapist to assess whether you are ready for this advanced form of dance. The last thing you want to do is begin training en pointe without the adequate strength, neuromuscular control, and flexibility that pointe requires – this can land you off your feet and with an injury!

By

Dr. Amanda Edwards, PT, DPT, OCS

3 Proven Strategies to Achieve Your Goals in the New Year

Every New Year starts with well-intentioned resolutions to change behaviors and achieve personal goals.  However, it is estimated that only 8% of people actually follow-through with their New Year’s resolutions.  Setting and achieving goals, whether part of a New Year’s resolution or not, is a skill which can be learned with practice and a little resilience.  In order to have any realistic chance of achieving any personal goal, you have to clearly identify what it is that you want, make a plan to achieve it and then work on that plan every single day.

Begin with a Written List

Don't skip this step
Write down your goals

First, imagine that you have all the time, money, skills, education, and experi­ence that you need to accomplish any goal you can set for yourself.  Dream big!  Write down whatever goals come to mind in 30 seconds.  Your goals must be in writing. They must be clear, specific, detailed, measurable, and written in the past tense as if they have already been achieved.  Only 3% of adults have written goals and we call these people “successful”.  Those who do not put their list in writing do not have goals, they have wishes.  The simple act of writing down your goals cements them in your subconscious mind.  Without conscious awareness, you then begin taking small incremental steps towards achieving your goals.  Next, review your list and identify the one goal which if achieved would have the biggest impact on all your other goals.  This one goal is where you start.

The strategy of putting your goals to paper is a must do within any context including those related to health and fitness goals.  For example, I have a goal related to improving my back squat performance.   My goal is as follows, “I have improved my 1-repetition maximum back squat to twice my bodyweight by the end of 2018.”  This goal is written on paper and visible on my mobile phone every time I access it.   The goal is clearly visible in my mind and not a day goes by where I will not be reminded of it.  Life’s challenges can never derail me from working on this goal.  What is your most important health or fitness goal for the New Year?  Write it down.

Develop Your Plan

Plan your success
Don’t make wishes. Set goals.

Planning starts with writing down a list of every single step that you can think of that you will have to follow to ultimately achieve your goal.  When you write out a list of all the things you will need to do to achieve your goal, you begin to see that your goal is far more attainable than you originally thought.  Next, organize your list by arranging the steps that you have identified by priority.  Identify the most important steps and begin working on them first.  The 80/20 Rule says that 80% of your results will come from 20% of your activities.  What are your 20% of activities which will make the biggest impact on achieving your goal?

Returning to my goal of improving the back squat, there are endless steps I could pursue to achieve this goal.  However, through several hours of deliberation and re-writing of my goals and priorities, I have arrived at the 3 biggest activities which will lead to goal achievement.  I will prioritize squat technique practice, gluteus maximus strength, and thoracic spine mobility.  Now, I have a clear goal, list of steps needed to achieve my goal, and clear priorities to focus on.  What is your plan to achieve your biggest goal for the New Year?

Work on Your Plan Every Day

Put first things first
Work on your plan every day

Your plan to achieving your goal and working on your priorities needs to be broken down into actionable steps.   Start by planning each day, week, and month in advance.  Plan each month at the beginning of the month.  Plan each week the weekend before.  And most importantly, plan each day the evening before.  Write down these actionable steps and then tackle the most important ones at the start of each day.  Don’t put off the most important steps to the end of the day, week, or month.  Procrastination only leads to frustration anda sense of  loss of control over your goal.

Every morning I ask myself, “If I could only do one thing all day long, which one activity would contribute the most value to my goals?”  Returning to the squat, this might include performing a series of thoracic mobility exercise first thing in the morning before the rest of the world is coming at me full speed.  Your ability to select your most important task and then to work on it with purpose, without distraction, at the start of your day will build momentum towards achieving your ultimate goal.  What is the most important action you can take at the start of your day to get you closer towards your goal?

Final Thoughts on Goals

Decide exactly what you want, write it down, make a plan, and work on it every single day.  If you commit to these strategies and develop positive habits, you will accomplish more in the next few weeks than many people accomplish in a year.  Join the 8% of people who actually turn dreams into goals and goals into reality.  Get started today and don’t look back.

Change is Hard: Build Healthy Habits for Life

Old habits die hard.   New habits are even more difficult to start.  When it comes to rehabilitating from an injury, long-term success often depends on developing new positive habits which promote a healthy and active lifestyle.   After completing a course of physical therapy or following the achievement of any fitness goal, it is easy to relax and resort back to old habits.  These old habits could be spending too much time relaxing in front of the television or losing track of several hours while parked in front of a computer.  In order to maintain or maximize positive change from an exercise program, new habits must take the place of the old habits.  Out with the old and in with the new.

 

 

Old Habits Die Hard

 

Intentional behavior change can be broken down into five stages.  Research has found that people move through these stages when modifying or changing behavior. The time a person stays in each stage is variable, but the steps required to move through the process is not.  These five stages are very applicable to optimizing outcomes in physical therapy.

 

Transtheoretical Model of Change

Stage 1: Precontemplation

The first stage is typically characterized by a resistance to change.  During precontemplation individuals do not consider change as an option or they do not see the benefit in changing.  Many who begin their rehabilitation are unsure about how exercise and behavior change can help their condition.  Perhaps, they are confused about why the doctor has not ordered an MRI?  At this point, it is imperative that the physical therapist does not attempt to coerce or force the patient into change.  Only through open communication, trust, and a positive working relationship can an individual progress beyond this stage.

Stage 2: Contemplation

During the second stage, the individual begins to see that a change may be beneficial but is unsure how to proceed.  Here a patient may begin weighing the pros and cons of following through with their initial home exercise program.  It is common for individuals to remain stuck in this stage throughout their rehabilitation.  Chronic contemplation or procrastination often leads to unsuccessful courses of treatment or frequent relapses of symptoms.  It is imperative that any patient moves beyond this stage before completing their course of care with their physical therapist.

Stage 3: Preparation

 Now the individual is ready to take the initial steps towards change.  This stage is characterized by the intention to change and taking steps towards change.  Developing a plan for change with your physical therapist is very important at this point.  Without purpose, goals, and a plan change will never be long-lasting.

Stage 4: Action

This stage is characterized by concrete steps that will lead to the desired change.  This may involve beginning a daily walking program or strength training in the gym three days per week.  This is where the foundation for lifelong positive healthy habits is built.  We like to see individuals progress into this stage before their final few visits in physical therapy.

Stage 5: Maintenance

Maintenance may be the most important stage because it involves effort to maintain the changes made during the action stage.  Success will require individuals to make modifications in their lifestyles and work to prevent relapses.  While in the maintenance stage, people are less tempted to relapse and grow increasingly more confident that they can continue their changes.  This is where positive habits are solidified.  Unfortunately, many do not remain in this stage long enough and ultimately resort to old habits leading to relapse.  We see this when dieters achieve a weight loss goal only to regain it back, plus more, within 2 years.  In rehabilitation, we often see individuals return for the same problem year after year because they were unable to follow-through with this final stage of intentional change.

 

Positive Habits Lead to Excellence

Conclusion

Some argue that it is human nature to resist change.  I disagree.  Some of us choose to remain comfortable with routines based on non-productive habits.  We will ultimately become what we think about most of the time.  If we can’t wait to leave work and relax on the couch, then this is what we will become.  If we are serious about our long-term health and life goals, we will take that 30-minute walk instead.  Any human being with purpose, goals, and a plan to change can accomplish great things.

One or two months of physical therapy are only the start towards behavior change.  Take what you have learned from your physical therapist and consider this one small step towards building healthy habits which will benefit you for a lifetime.   Long-lasting intentional change is hard but we all know waiting around for things to change never gets us closer to our goals.

Resilience: The Final Piece of Recovery from Injury

Resilience is the ability to recover from or adjust to misfortune or change.   Successful recovery from injury requires resilience to overcome physical and psychological challenges.  There will always be times during rehabilitation when things seem to never go as planned.  This could be a set back where pain or swelling increases temporarily for unexplained reasons.  During these situations, it can be easy to look for excuses or a quick fix solution.  However, the true solution often lies within us in the form of resiliency.

Developing Resilience

Physical therapists, trainers, or coaches can assist by instilling a sense of resiliency within their patients or clients.  This begins by developing trust and truly understanding what the end goal is.  Understanding the desired outcome and feeling prepared for when adversity strikes is a crucial step towards building resilience.  Attempting to motivate or push individuals is rarely successful under conditions of adversity.  Parents who continuously push their child in sports often undermine resilience and contribute to burnout.  The same often occurs during rehabilitation when healthcare providers fail to collaborate and problem solve with their patients.

Resilience and Mindset

Patients and athletes recovering from an injury often expect the worst.  This mindset is extremely detrimental to recovery.  In order to handle adversity and the challenges of rehabilitation, it is important to put in good old-fashioned hard work.  This work must be purposeful, intense, and practiced repeatedly in order to build resilience.  Those who commit to putting in the work build resilience and begin to expect success.  Those who fail to put in the work often expect the next set back and feel helpless about it.  Ultimately, we become what we continuously think about.  Expecting a set back with a sense of helplessness will nearly always lead to failure.

Resilience from Michael Jordan

Putting in the Work & Mental Toughness

Following through with a rehabilitation program at 100% is an example of putting in the work.  This contributes to developing resilience through physical means such as building a foundation of strength and optimizing movement patterns.  Putting in the work also develops resilience through mental toughness.  When injury or adversity ensues, some look for passive solutions while others dig deep into their mental toughness and work to make things right.   These are life skills and personal traits which go beyond rehabilitation or sport.

Conclusion

Successful recovery from injury requires resilience.  Resilience requires purpose, goals, hard work, repetition, and mental toughness.  Developing a trusting and collaborative relationship with your physical therapist will better prepare you for when adversity strikes.   When adversity does appear, the solution is often found within.   The resilient individual will adapt and overcome.  When things are not going well during rehabilitation, take back control and get yourself back on track.

Movement Patterns are King, Not Isolated Muscles or Joints

The traditional medically oriented examination occurs with a patient on a treatment table focusing on the isolated area of pain. Even worse, a static image such as an MRI may be taken to determine the “cause of the problem”. These types of examination procedures provide only limited information for any professional seeking to develop a treatment plan. The human body does not function on an examination table or in an MRI tube. Movement occurs from a complex interaction of the nervous system with our muscles and joints.

In order to determine an accurate diagnosis and arrive at the best treatment plan, whole patterns of movement should be the focus. A baseball player experiencing pain during the late cocking phase of throwing should be examined throwing a ball in this position. A football player experiencing pain or giving way in the ankle should be examined in the same functional position which recreates his symptoms. This sure seems like common sense, but it is not always common practice.

The Area of Pain is Often Not the Cause

Many times, problems in the hip can lead to pain in the back. Problems in the upper back can lead to pain in the shoulder. And, problems in the ankle can contribute to pain in the knee. I could go on and on with examples of what is typical in an outpatient physical therapy clinic. In order to uncover the cause of pain or poor movement, whole movement patterns must be assessed and treated.  For individuals with pain in the front of their knee, isolated treatments to the knee rarely provide substantial relief. Assessing movement patterns such as an overhead squat, step down, or running is often the key to determining the corrective course of action.

Movements, Not Parts

Assessing and treating movement patterns, not isolated body parts, is the key to a speedy and long-lasting recovery. It is very common for limited mobility in the upper back and hips to lead to abnormal motion in the low back. Movement compensations in the low back then manifest as “disc problems” under an MRI. Treating the “disc” is rarely successful in alleviating these types of problems.

Pain Changes Movement

Sustaining a previous injury increases the risk for future injury. Spraining an ankle in middle school can contribute to knee pain in high school. This is because pain or injury changes the way we move. Individuals with previous history of ankle sprains have been shown to demonstrate delayed activation of their glute muscles and difficulty balancing on one leg several years later. If these compensations are not identified and corrected, movement patterns are changed and injury risk increases.

The human body will follow the path of least resistance in order to perform a task.  The nervous system will choose to perform the most efficient pattern of movement from an energy standpoint. The body will attempt to conserve energy during movement in case it needs it later during a crisis. However, the most efficient pattern of movement is often not the optimal pattern of movement.

Using the same example of an individual with a previous ankle sprain, we often see asymmetrical weight shifting during exercises such as a squat or deadlift. The asymmetrical weight shift will allow the body to lift the weight at that moment in time.  However, with continued compensation of movement, asymmetrical training stresses will be applied leading to suboptimal performance and the potential for further injury.

Muscles Do Not Have Memory

Pain alters the way our nervous system organizes patterns of movement. Muscles do not have memory. The brain stores patterns of movement and then signals muscles to execute what is believed to be the most efficient pattern. With repeated performance of compensatory movement patterns, the abnormal becomes the new normal. The asymmetrical squat is now programmed in the central nervous system and remains long after any injury has healed. The nervous system is very complex and we do not completely understand how this works. However, we do know these patterns can be reprogrammed and corrected with appropriate movement training by skilled professionals.

Optimal Movement is Individual

There is no single best way for all individuals to move.  We are all structurally built differently. One person’s hip socket may be oriented facing slightly downward. Another person’s hip socket me be more outward facing. These structural differences will change positioning of the body during movements such as a squat or lunge. Attempting to teach all individuals to move in exactly the same fashion is unreasonable and has the potential to increase risk for injury. All movements, exercises, and exercise programs should be individualized based on the findings from a detailed assessment by a skilled professional.

Conclusion

We should be looking past the isolated area of pain and uncover the true cause of the problem by assessing whole functional movement patterns. This type of assessment identifies subtle problems with movement which we may be unaware of. Once you are made aware of these compensations, you can start to address them. Correcting the problem will take conscious effort and require coaching from a skilled professional.  Once you are able to perform the movement correctly and automatically, it is time to increase the load and strengthen the movement pattern.

Strength is the Foundation: Getting Stronger Benefits Us All

Muscular strength is defined as the ability to exert a force on an external object or against some type of resistance. Strength may be expressed when hitting a baseball during sport or when standing up from a low chair during everyday life. Strength is required to press a loaded barbell overhead or strength may be needed to carry groceries from the car into the home. Optimizing strength across the lifespan can have profound effects on athletic performance, quality of life, health, and longevity.

Strength & Sports Performance

During sport, athletes exert large forces against gravity (i.e., sprinting or gymnastics), against an opponent (e.g., football) or when manipulating an object (e.g., throwing a baseball). Muscular performance can be a limiting factor in performing any of these athletic endeavors. Power refers to the rate at which force is produced. Stronger athletes produce more force and often do so in much less time. Power is associated with several important sport variables such as sprinting speed, jumping, change of direction, and throwing velocity. Improving muscular strength through resistance training is a sure fire way to improve power and subsequent sports performance.

An athlete’s ability to run, jump and change direction is crucial for success in most sports. Enhancing muscular strength improves these characteristics which often transfer to sport specific skills during competition. Stronger athletes jump higher and further than weaker athletes. Strength may be expressed when an athlete elevates for a rebound in basketball, jumps to spike a ball in volleyball, or dives to catch a ground ball in baseball. Athletes, who produce large forces on the ground, are able to jump higher and further than weaker athletes. This results in a true competitive advantage in many sports.

Stronger athletes are also able to accelerate running speeds over short distances. Elite athletes are able to produce greater forces, with short ground contact times, and with greater stride lengths compared to non-elite athletes. Evidence strongly suggests a correlation between maximal strength and running speed1. Athletes who produce greater amounts of force over a shorter period of time are able to change direction at greater velocities. This is important in basketball or football when attempting elude defenders. Becoming stronger is a no-brainer for any athlete looking to jump higher, run faster, or rapidly change direction during their sport. Lateral lunge variations are an excellent way to improve strength in the frontal plane where many athletic injuries occur.

Strength transfers to performance in both strength-power sports and endurance sports. Stronger cyclists are faster than weaker cyclists. Handball players with greater strength outperform weaker handball players. Stronger sprinters have faster 100-meter times than weaker sprinters. Stronger baseball players possess greater bat speeds and throwing velocities than weaker players. Strength alone does not ensure athletic success, but the evidence is compelling that stronger athletes possess a competitive advantage over weaker athletes in most sports.

Strength & Quality of Life

There has been a steady decline in fitness and muscular strength in children and youth across the world. Research shows greater muscular fitness in school-aged youth (4-19 years)is associated with improved body composition (e.g., decreased body fat), and improved risk factor profiles for heart disease and diabetes2. There is also strong evidence for a positive association between muscle strength and bone health and self-esteem in children2. Therefore, youth physical activity programs which promote muscular strength can have many benefits related to overall health and quality of life.

Sarcopenia refers to the age-related loss of muscle size and strength in older adults. Loss of muscle mass begins at approximately age 25 and progresses to a loss of 30% or more by the age of 80. Loss of muscle mass occurs primarily in type II muscle fibers which are highly responsible for muscle strength and power. Therefore, the rate and magnitude of strength loss usually exceed that of muscle mass by 2-5 times.

Age-related loss of muscle strength and bone mass (osteopenia) are associated with impaired functional mobility, compromised balance, and increased risk of arthritis, joint replacement surgeries, falls, and fractures. All of these factors can substantially diminish the quality of life. Nearly 20% of women and 10 % of men over the age of 65 cannot lift a 10-pound weight or kneel down on the floor. The age-related loss of strength is also associated with an inability to live independently and premature death3.

Maintaining muscle strength is a key strategy that leads to healthy aging. Sedentary behavior and physical inactivity are key drivers of sarcopenia and can accelerate the loss of muscle mass and strength. Maintenance of physical activity and engagement in a regular strength training program can diminish or even prevent these age-related changes. Pulling exercises or row variations are great for strengthening the upper body and core musculature.

The Importance of Strength for Optimal Health & Longevity

It is well-known that aerobic fitness is associated with decreased risk for chronic disease and premature death. The health benefits of exercise programs which target muscular strength is less known to the general public. A 2017 study published in the American Journal of Epidemiology showed resistance training reduced the risk of all-cause and cancer-related death to a greater degree than aerobic exercise4. There is now a growing body of evidence suggesting poor muscular strength is associated with death from all causes in both healthy and diseased populations

Another review in the European Journal of Internal Medicine reported a reduced risk for all-cause mortality with increased levels of muscular strength5. This association persists even after controlling for age, body fat, smoking, alcohol intake, medications, other health conditions, physical activity, and levels of cardiorespiratory fitness. Handgrip strength has been associated with survival and long-term outcomes in patients with cancer. Muscular strength has also been shown to be associated with long-term outcomes in patients with heart disease.

The health and mortality benefits of muscular strength appear to be related to multiple physiological mechanisms. This includes improved blood pressure, blood lipids, and body composition. Reduced systemic inflammation and reduction in insulin resistance have also been linked to improved muscular strength and mortality. Based on the available evidence showing a strong association with muscular strength and mortality, adults should perform muscle-strengthening exercises at least 2 days per week in order to reduce mortality risk. For most, basic lower body exercises such as squats and hip hinges are great places to start with a strengthening program.

Conclusion

We continuously perform activities during sport or our daily routine which require the expression of muscular strength. To a certain extent, muscular strength can be inherited. However, strength will never be optimized and will ultimately decline with age unless strength promoting exercises are undertaken. Optimizing or preserving muscular strength is strongly associated with improved sports performance, improved quality of life, improved physical function, reduced risk for chronic disease, and reduced risk for all-cause death. This should be sufficient evidence for all individuals, regardless of age or health status, to engage in some form of resistance training today.

References

  1.  Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419-1449. doi:10.1007/s40279-016-0486-0.
  2. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014;44:1209-1223. doi:10.1007/s40279-014-0196-4.
  3. McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: The importance of skeletal muscle strength for healthy aging. Biogerontology. 2016;17(3):497-510. doi:10.1007/s10522-015-9631-7.
  4. Stamatakis E, Lee I, Bennie J, et al. Does strength promoting exercise confer unique health benefits? A pooled analysis of eleven population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Eur J Intern Med. 2017; Ahead of P:1-37. doi:10.1093/aje/kwx345/4582884.
  5. Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med. 2017;26(5):303-310. doi:10.1016/j.ejim.2015.04.013.

Warm-Up to Optimize Training

Walk into any gym in the area and you are likely to see people who completely neglect the warm-up. Others spend 45 minutes or more on the foam roller, stretching with bands, or torturing themselves with lacrosse balls. So what is the deal with warming-up before a training session? The purpose of the warm-up is to prepare the body, mentally and physically, for the upcoming training session or for competition. When done properly, the warm-up can improve performance and in some instances, may lessen the risk of injury.

The positive effects of any warm-up are best achieved through an active form rather than passive or static stretching techniques. The positive effects of a warm-up can be achieved through temperature-related and non-temperature-related effects. Temperature-related effects include increased muscle temperature, core temperature, enhanced nervous system function, and improved connective tissue flexibility. Non–temperature-related effects include increased blood flow to muscles, improved oxygen consumption, and improved muscle contraction capabilities.

Other physiological and performance benefits of the warm-up include:

  • Faster muscle contraction and relaxation
  • Improvements in the rate of force development
  • Faster reaction time
  • Improvements in muscle strength and power
  • Lowered stiffness in muscles and joints
  • Improved oxygen delivery to working muscles
  • Increased blood flow to working muscles
  • Increased psychological preparedness

The Basic Components of an Effective Warm-Up

There are two basic phases to a well-designed warm-up before the start of a training session. These are the general warm-up and the specific warm-up. The general warm-up typically consists of 5 minutes of slow aerobic activity such as jogging, skipping, or cycling. The aim of this phase is to increase heart rate, blood flow, muscle temperature, respiration rate, and joint mobility. This phase is typically followed by a period of general stretching that aims to replicate the ranges of motion required for the upcoming training session. The specific warm-up

Typically incorporates movements similar to the movements of the athlete’s sport or training session. This should include rehearsal of the skill(s) to be performed. It is recommended the specific warm-up last 10 to 20 minutes with no more than 15 minutes between the end of the warm-up and start of activity (training session or competition).

The warm-up for a game or competition aims to maximize performance in the subsequent event. However, for the training session, in addition to optimizing acute performance during the session, the specific warm-up should contribute to the overall long-term development of the athlete. This is often an ideal time to incorporate individualized corrective exercise into an athlete’s program. For the baseball pitcher this may include rotator cuff activation exercises such as diagonal patterns with resistance bands.

Structuring the Warm-Up to Optimize Short and Long-Term Performance

Effective warm-ups should be thought of as an integral part of any training session, not as a separate entity.  Raise, Activate and Mobilize, and Potentiate (RAMP) is an acronym used to describe a more detailed structure for a warm-up2. This builds on the general and specific structure offering an approach which maximizes both acute and long-term performance.

Raise, refers to increasing the level of several physiological variables and the level of skill of the athlete. This phase is analogous to the general warm-up and aims to elevate body temperature, heart rate, respiration rate, blood flow, and joint mobility through low-intensity activities. General aerobic exercises, such as cycling or the elliptical trainer, are often inserted here. However, it is more beneficial to attempt to simulate the movement patterns of the upcoming activity or develop the movement patterns or skills the athlete will need to utilize within the sport. Instead of treadmill jogging before a squat session, the athlete can perform walking lunges to prepare physically and psychologically. In this way, the training session, from the start of the warm-up, is targeted at key movement patterns and skills and not just aerobic capacity.

Activating and mobilizing refers to the stretching component of a warm-up. Key movement patterns required for athletic performance in both the subsequent session and the athlete’s long-term development are performed. This might include corrective exercise for core stabilization or specific mobility. Static stretching may be incorporated as corrective exercise if specific deficits are identified. Baseball players can consider inserting static stretches for the lats, forearms, or rotator cuff. Any decrement in subsequent strength or power from static stretching is likely very short-lasting1.

Performing dynamic warm-up activities following static stretching will override any small transient performance decrements. The focus of mobility exercise is always on actively moving through a range of motion not static stretching. Dynamic stretching requires a combination of control, stability, and flexibility and more closely relates to the movement requirements an athlete will face in the training session or their sport. Dynamic stretches are extremely time-efficient compared to single muscle static stretches. Prior to overhead pressing with the bar, try warming-up with 20 reps of a door slide exercise or band external rotation to press.

Potentiation refers to the specific warm-up and focuses on the intensity of activities. This phase incorporates specific activities that progress in intensity until the athlete is performing at the intensity required for the training session. The potentiation phase is often omitted from training sessions. It is common to see an athlete proceed from a stretching exercise directly into their first working set of a squat or Olympic lift. This only compromises strength and power output.

There is strong evidence showing high-load dynamic warm-ups enhance subsequent power and strength performance3. The more power necessary for the exercise or activity, the more important the potentiation phase of the warm-up becomes. The objective is to include high-intensity dynamic exercises in order to prepare the nervous system.  Exercises which include short bouts of a high-intensity sprints, jumps or throws are ideal. Again, these warm-up exercises should be targeted to the upcoming session but also address the longer-term requirements of the athlete. A few sets of 2-3 plyometric jumps can be performed before getting under the bar for squats.

Conclusion

Many athletes or fitness enthusiasts are unaware of the optimal structure and performance benefits related to a proper warm-up. The RAMP protocol is a great foundation to structure any warm-up. More importantly, any properly designed warm-up should prepare the body for the subsequent training session and also assist in the long-term development of the athlete. If you are looking for performance gains for your next training sessions and the long-term, get serious about warming-up.

References

  1. Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41, 1–11.
  2. Haff, G.G., Triplett, N.T. (2016). Essentials of strength training and conditioning (4th ed). Champaign, Ill: Human Kinetics.
  3. McCrary, J. M., Ackermann, B. J., & Halaki, M. (2015). A systematic review of the effects of upper body warm-up on performance and injury. British Journal of Sports Medicine, 49, 935–942. http://doi.org/10.1136/bjsports-2014-094228

Off-Season Baseball Strength and Conditioning: Lessons from the Yankees

The winter months are quickly approaching here in the Northeast. For youth baseball players the cold winter is the ideal time to focus on developing muscular strength and explosive power. These physical attributes transfer to the baseball field as quickness, running speed, bat speed, throwing velocity, ball exit velocity, and overall resiliency needed to survive the grind of a full season. Under most circumstances, youth athletes should always be encouraged to participate in multiple sports throughout the year up until about the age of about 15 or 16. Continuing efforts to improve baseball skills, such as hitting, is important for the mature specialized youth athlete. However, baseball performance will never be optimized without a well structured and supervised off-season strength and conditioning program.

Steinbrenner Field, Tampa

Last week I had the unique opportunity to visit the New York Yankees spring training complex in Tampa, Florida. It was a special weekend for a lifelong Yankees fan and strength and conditioning nerd like myself. The Yankees strength and conditioning and sports science staff hosted a group of growth-minded coaches from the National Strength & Conditioning Association. The entire day was tremendous and a humbling learning experience.  Topics included leadership, hill running for baseball players, and programming for off-season strength training. The Yankees staff stressed the importance of a well-structured year-round strength and conditioning program for all players from the rookie leagues up through the majors. The Yankees organization fully expects to win many more World Series trophies and developing their athletes is a big part of their winning plan.

What Makes a Great Baseball Player?

Hitting a baseball is a sequence of coordinated muscle activity involving the hips, torso, and arms. Bat speed is an important factor affecting how hard the ball is hit and how far the ball travels. Training baseball players targets the lower body and explosive torso rotational exercises. Exercises which develop upper body power, lower body power, and torso rotational power, all transfer on the field to improved bat speed. Research also indicates lean body mass, lower body power, sprint speed, and grip strength are closely correlated with baseball-specific performance measures such as total bases, slugging percentage, home runs, and stolen bases. The off-season is the ideal time to train these attributes in baseball players because this is typically the period when the least amount of baseball-specific batting or pitching practice is taking place.

In 2010, researchers from Louisiana Tech University investigated the relationship between player variables and bat speed in 2 groups of high-school baseball players before and after completing a 12-week resistance training program. Both groups completed the same upper and lower body resistance training program and took 100 bat swings 3 days per week. However, one group also performed additional full-body rotational medicine ball exercises. Several body composition and physiological variables, along with bat speed, were assessed before and after the training program.

Researchers found bat speed was associated with greater lean body mass and height. This sounds like Aaron Judge to me. Torso rotational strength was even more closely associated with bat speed in these high school athletes. Lower body power, measured by vertical jump, was also closely associated with bat speed. Finally, lower body strength (measured with 3-repetition maximum squat) and upper body strength (measured with 3-repetition  maximum bench press) were also associated with bat speed. From this research, in order to improve bat speed in baseball players, off-season strength and conditioning programs should target improving lean body mass, rotational power, lower body power, lower body strength, and upper body strength.

The Off-Season Baseball Strength & Conditioning Program

Off-season baseball strength and conditioning focuses on improving total body strength, rotational power, and lower body power. Pitchers also focus some of their efforts on arm care programs in order to prepare for the volume of throwing which places unique stresses on the shoulder and elbow. Pitchers must possess adequate strength in order to develop power and throwing velocity. Programs typically last 10 to 12 weeks with training occurring 3 days per week. Volume and intensity of these programs are progressed and tapered down as the athlete gets closer to pre-season when baseball-specific skill training becomes increasingly important. Resistance training with free weights or cables, plyometric training, and medicine ball training are the cornerstones of the off-season program.

Resistance training has been shown to improve both bat speed and throwing velocity in youth baseball players.  These exercises seek to build foundational strength through movement patterns such as the squat, hinge, and press. However, as previously mentioned, baseball involves a great deal of rotational and diagonal movement which should be heavily incorporated into training. The cable push-pull exercise is great for improving torso rotational strength in the position player or pitcher. Baseball players often exhibit muscle imbalances where the front of the body (anterior chain) is stronger than the back (posterior chain). Therefore, it is common for programs to include a 2 to 1 ratio of pull to push exercises. Training volume with movements such as rows and lifts targeting the posterior chain should be stressed over movements such as presses.

Baseball is also an asymmetrical one-side dominant sport which involves throwing with one arm or batting from the same side of the plate. Barbell training for the squat, deadlift, and sometimes the bench press can be included in a periodized program to improve bilateral strength. However, it is very important for the baseball player to be training unilaterally with dumbbells or kettlebells. Single arm rows, split-stance squats or lunges, and single-arm kettlebell swings are great examples of unilateral exercises.

Power is the product of strength and speed. Power is expressed when throwing, swinging or jumping during the game of baseball. Strength is trained with resistance exercise using heavy loads at slower speeds. Plyometric training involves drills designed using maximal force as quickly as possible. These exercises are important for training the speed component of power. Research from Arizona State University showed complex training utilizing both heavy resistance training and plyometric jump training improved power in baseball players to a greater degree than either resistance or plyometric training alone. Lower body plyometric drills to improve explosive power for the baseball player include box jumps, lateral jumps, and split squat jumps.

Medicine ball training is a form of explosive exercise using rapid force development and transfer from the lower body and torso through the arms. Medicine ball throws are ideal for developing rotational power which is crucial for any baseball player. Twelve weeks of resistance training plus medicine ball training resulted in greater improvements in rotational strength compared to resistance training without medicine ball drills. In another study, 6 weeks of supervised medicine ball training in high school baseball pitchers was shown to result in a 2% increase in throwing velocity. It is very important that athletes are instructed in proper technique during these drills. Performing explosive medicine ball training with improper technique can result in decreased throwing performance or injury. Common medicine ball drills used with baseball players include the squat and throw, perpendicular throw, and hitter’s throw.

Conclusion

The baseball player’s off-season strength and conditioning program should coincide with specialized sports skill practice. However, the off-season is not the time where pitchers should be throwing at high volumes. Youth pitchers should rest from throwing for a minimum of 2 to 4 months per year. The off-season throwing program must be individualized to meet the needs of the athlete. Regardless of the structure of skill practice, the off-season is the ideal time to divert efforts towards improving strength, power, speed, and resiliency. As the off-season progresses and the athlete approaches the pre-season, the focus on strength and conditioning should decrease. At the same time, sport skill training (pitching, hitting, and fielding) increases.

Off-season strength and conditioning for baseball players improves performance through the development of strength, speed, and explosive power. These qualities are the foundation of a long and successful baseball career. Youth athletes should be instructed, supervised, and progressed by trained professionals who have experience with baseball players. The research is clear about how baseball players are built. The New York Yankees have taken notice and put these concepts into practice. Youth baseball players are not miniature professional athletes and should not be trained as such. However, the basic principles used by the Yankees can be applied to youth athletes by trained professionals who understand the science.

References

  1. Dodd, D. J., & Alvar, B. A. (2007). Analysis of acute explosive training modalities to improve lower-body power in baseball players. Journal of Strength & Conditioning Research, 21(4), 1177–1182.
  2. Escamilla, R. F., Ionno, M., DeMahy, S., Fleisig, G. S., Wilk, K. E., Yamashiro, K., … Andrews, J. R. (2012). Comparison of three baseball-specific 6-week training programs on throwing velocity in high school baseball players. Journal of Strength & Conditioning Research, 26(7), 1767–1781.
  3. Hoffman, J., Vazquez, J., Pichardo, N., & Tenenbaum, G. (2009). Anthropometric and performance comparisons in professional baseball players. Journal of Strength & Conditioning Research, 23(8), 2173–2178.
  4. Szymanski, D., Szymanski, J. M., Bradford, J., Schade, R. L., & Pascoe, D. (2007). Effect of twelve weeks of medicine ball training on high school baseball players. Journal of Strength & Conditioning Research, 21(3), 894–901. http://doi.org/10.1519/R-18415.1
  5. Szymanski, D., Szymanski, J., Schade, R., Bradford, T., McIntyre, J., DeRenne, C., & Madsen, N. (2010). The relation between anthropometric and physiological variables and bat velocity of high school baseball players before and after 12 weeks of training. Journal of Strength & Conditioning Research, 24(11), 2933–2943.

Does Stretching Reduce Injury Risk in Athletes?

Static stretching exercises are commonly performed as a method to improve muscle flexibility and overall mobility. Typically, stretches are sustained for 15 to 30 seconds and performed multiple times during an exercise session. Many athletes and fitness enthusiasts perform stretching in preparation for a training session or competition. Others believe regular performance of static stretching can reduce their risk of sustaining an injury. Stretching routines often consume an enormous amount of time for some athletes.  Does the current body of research suggest this time is well spent? Or can athletes better spend their time and energy on other types of training in order to reduce injury risk?

Stretching & Injury Risk

A review of the research published in the British Journal of Sports Medicine looked at the role of several forms of exercise in reducing the risk for sports injuries.  Twenty-five original studies including over 25,000 athletes looked at the preventative effects of stretching, strength training, and proprioceptive training. Stretching, before or after exercise, was determined to have no preventative effects against acute or chronic sports injuries. The most significant finding from this review was strength training reduced all sports injuries to less than 1/3 and overuse injuries were cut in half.

Other systematic reviews have also concluded no preventative effects for static stretching. One study even suggested that stretching may increase the risk of patellar tendon injuries or “jumper’s knee”. My experience with static stretching leads me to believe there is a neutral effect. In other words, there is no direct preventative or harmful effects to static stretching. Static stretching should be an extremely small part of any training program. In most cases, stretching is not necessary to reduce injury risk or improve performance.

The Acute Effects of Stretching

Static stretching induces range of motion improvements, but these effects are short-term typically lasting less than 30 minutes. Many myths exist with regards to what is actually happening at a physiological level.  Changes in mobility may result from acute reductions in muscle and tendon stiffness or from nervous system adaptations causing an improved stretch tolerance. Stretch tolerance refers to an athlete’s ability to tolerate the discomfort of the stretch. Athletes with a greater range of motion tend to demonstrate a greater level of stretch tolerance. Thus they are able to tolerate a greater stretch load. Improving stretch tolerance can be achieved through different training methods one of which is static stretching. However, if athletes are looking to reduce their risk of injury, or simply better prepare themselves for training, time can be better spent using more beneficial techniques.

Stretching or Strength Training?

First and foremost, athletes and fitness enthusiasts should build their training routines on a solid foundation of strength training. A comprehensive and proper strength training program may increase flexibility through enhanced stretch tolerance. Strength training also assists in the development of force capacity through the newly gained range of motion. In order to maximize the effect, athletes should perform strength training movements in a controlled fashion through the full available range of motion.

Strength training promotes a sense of resiliency, reduces injury risk, and improves overall performance in many aspects of life. I have written about the benefits of youth strength training for reducing injury risk and performance. Static stretching has no effects on injury reduction or performance, and does not promote resiliency within athletes. Sure, holding hamstring stretches for sustained periods of time feels nice and promotes a sense of relaxation. This may have a time and place but do not confuse the calming effects or short-term increases in mobility gained through static stretching as beneficial for injury risk reduction.

Stretch if You Must

Athletes who insist on performing static stretching should probably do so at the end of their training session or after competition. Prior to training or competition, perform dynamic activities as part of a preparatory warm-up. Performing the warm-up actively in weight bearing positions is the best approach. Also performing the warm-up with multiple joint movements will better prepare the athlete for the complex movements of sport or training. Dynamic stretching, sometimes referred to as mobility drills, places an emphasis on the movement requirements of the sport or activity rather than on individual muscles. An example would be performing body-weight lunge walking prior to a squat training session. There are endless possibilities for one to dynamically prepare the hips prior to squatting.

For athletes looking to improve their mobility and overall performance in the gym, static stretching should play a minimal, if any, role. Instead, try performing dynamic activity-specific preparatory movements with progressive loading. Performing ten minutes of piriformis and calf muscle stretching will do little to improve performance during a squat session. Instead, include some loaded goblet squats or split squats prior to warming up with the barbell. Increase the load progressively until you reach your working set intensity. With this approach, the dynamic warm-up and start of the training session are continuous and optimal for preparing the body for performance. After putting in the work at the end of the training session, feel free to lie down on the floor and stretch those “tight hamstrings”.

Conclusion

Contrary to popular belief, stretching has no beneficial effects on reducing injury risk and its role in performance enhancement is questionable at best. Athletes should use static stretching sparingly and focus their time and efforts towards more effective injury reduction strategies such as a well-supervised and progressive strength training program. Lying on the floor to stretch certainly feels good but in order to achieve lasting benefits, nothing can replace hard work and sweat in the gym.

References

  1. Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41, 1–11.
  2. Haff, G.G., Triplett, N.T. (2016). Essentials of strength training and conditioning (4th Ed). Champaign, Ill: Human Kinetics.
  3. Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 48, 871–877. http://doi.org/10.1136/bjsports-2013-092538
  4. Peters, J. A., Zwerver, J., Diercks, R. L., Elferink-Gemser, M. T., & Akker-scheek, I. Van Den. (2016). Preventive interventions for tendinopathy: A systematic review. Journal of Science and Medicine in Sport, 19, 205–211.

Resistance Training & Performance in Young Athletes

Previously, the safety of strength training and its role in reducing youth athletic injuries was discussed. We now turn our attention to the role of resistance training to optimize performance in young athletes. High levels of muscular strength and power are essential for maximizing sport performance in any young athlete. Muscular strength is defined as the maximum force which can be exerted during a given movement. Power is the product of force and velocity and relates more to the speed at which strength can be expressed. Strength and power can be significantly improved through properly designed, supervised, and progressed resistance training programs for athletes of any age.

When to Start Youth Resistance Training

Children as young as 10 years-old can achieve substantial performance improvements through properly supervised and progressed resistance training programs. A 2014 study1 in the Journal of Strength & Conditioning Research showed young children engaged in resistance training with free weights, Olympic weight lifting with barbells, or plyometrics significantly improved vertical jump, long jump, balance, speed, agility, strength, and power. Resistance training combined with plyometrics results in superior performance gains compared to resistance training alone3. Correct performance of each exercise with proper movement patterns is always emphasized and little importance is given to the amount of weight lifted. Pre-adolescent athletes can show substantial improvements in strength and power due to neurological adaptations. Large changes in muscle mass or body composition do not occur until puberty.

Priming the Athlete to Flourish in Adolescence

Peak height velocity, or a child’s “growth spurt”, marks the point in maturation where hormones (i.e., testosterone in boys) rise exponentially and many physiological changes occur. In boys, this is the point where muscle mass spikes and young athletes begin to show large improvements in muscular strength and power. A 2016 systematic review5 in the Journal of Sports Sciences, showed boys adaptations to resistance training are greatest during and following their peak height velocity. Ideally, these athletes should have already developed the foundational movement pattern competencies during childhood. During peak height velocity, increasing the training volume and intensity often results in profound improvements in strength, power, and performance. Athletes without prior resistance training experience, or those who have not mastered fundamental movement patterns, will be at a disadvantage compared to athletes who began training earlier in childhood.

How Much Youth Strength Training is Enough

Research shows a dose-response relationship of strength training on performance in young athletes4. In order to maximize power and strength development, high school athletes should train at relatively high intensities, 2 to 4 times per week, with multiple sets per exercise, 6 to 8 repetitions per set, and with long rest periods between sets (3 to 4 minutes). High school athletes should incorporate Olympic lifts (clean, snatch) in order to maximize power development. A 2008 study2 in the Journal of Strength & Conditioning Research showed Olympic lifts resulted in superior improvements in vertical jump compared to training with traditional power lifts (squat, dead lift, and bench press).

Conclusion

The underlying key to success with any youth strength and conditioning program is related to supervision and progression by a qualified professional. Safety and performance outcomes can only be achieved when young athletes are coached appropriately. When implemented correctly, strength training can positively alter the trajectory of any young athlete’s athletic career or life.

References

  1. Chaouachi A, Hammami R, Kaabi S, Chamari K, Drinkwater E, Behm D. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J Strength Cond Res. 2014;28(6):1483-1496.
  2. Channell B, Barfield J. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys. J Strength Cond Res. 2008;22(5):1522-1527. doi:10.1519/JSC.0b013e318181a3d0.
  3. Faigenbaum AD, Mcfarland JE, Keiper FB, et al. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J Sport Sci Med. 2007;6:519-525.
  4. Lesinski M, Prieske O, Granacher U. Effects and dose – response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br J Sports Med. 2016;50:781-795. doi:10.1136/bjsports-2015-095497.
  5. Moran J, Sandercock GR, Ramírez-Campillo R, Meylan C, Collison J, Parry DA. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sport Sci. 2016;414:1-12. doi:10.1080/02640414.2016.1209306.