Does Stretching Reduce Injury Risk in Athletes?

Static stretching exercises are commonly performed as a method to improve muscle flexibility and overall mobility. Typically, stretches are sustained for 15 to 30 seconds and performed multiple times during an exercise session. Many athletes and fitness enthusiasts perform stretching in preparation for a training session or competition. Others believe regular performance of static stretching can reduce their risk of sustaining an injury. Stretching routines often consume an enormous amount of time for some athletes.  Does the current body of research suggest this time is well spent? Or can athletes better spend their time and energy on other types of training in order to reduce injury risk?

Stretching & Injury Risk

A review of the research published in the British Journal of Sports Medicine looked at the role of several forms of exercise in reducing the risk for sports injuries.  Twenty-five original studies including over 25,000 athletes looked at the preventative effects of stretching, strength training, and proprioceptive training. Stretching, before or after exercise, was determined to have no preventative effects against acute or chronic sports injuries. The most significant finding from this review was strength training reduced all sports injuries to less than 1/3 and overuse injuries were cut in half.

Other systematic reviews have also concluded no preventative effects for static stretching. One study even suggested that stretching may increase the risk of patellar tendon injuries or “jumper’s knee”. My experience with static stretching leads me to believe there is a neutral effect. In other words, there is no direct preventative or harmful effects to static stretching. Static stretching should be an extremely small part of any training program. In most cases, stretching is not necessary to reduce injury risk or improve performance.

The Acute Effects of Stretching

Static stretching induces range of motion improvements, but these effects are short-term typically lasting less than 30 minutes. Many myths exist with regards to what is actually happening at a physiological level.  Changes in mobility may result from acute reductions in muscle and tendon stiffness or from nervous system adaptations causing an improved stretch tolerance. Stretch tolerance refers to an athlete’s ability to tolerate the discomfort of the stretch. Athletes with a greater range of motion tend to demonstrate a greater level of stretch tolerance. Thus they are able to tolerate a greater stretch load. Improving stretch tolerance can be achieved through different training methods one of which is static stretching. However, if athletes are looking to reduce their risk of injury, or simply better prepare themselves for training, time can be better spent using more beneficial techniques.

Stretching or Strength Training?

First and foremost, athletes and fitness enthusiasts should build their training routines on a solid foundation of strength training. A comprehensive and proper strength training program may increase flexibility through enhanced stretch tolerance. Strength training also assists in the development of force capacity through the newly gained range of motion. In order to maximize the effect, athletes should perform strength training movements in a controlled fashion through the full available range of motion.

Strength training promotes a sense of resiliency, reduces injury risk, and improves overall performance in many aspects of life. I have written about the benefits of youth strength training for reducing injury risk and performance. Static stretching has no effects on injury reduction or performance, and does not promote resiliency within athletes. Sure, holding hamstring stretches for sustained periods of time feels nice and promotes a sense of relaxation. This may have a time and place but do not confuse the calming effects or short-term increases in mobility gained through static stretching as beneficial for injury risk reduction.

Stretch if You Must

Athletes who insist on performing static stretching should probably do so at the end of their training session or after competition. Prior to training or competition, perform dynamic activities as part of a preparatory warm-up. Performing the warm-up actively in weight bearing positions is the best approach. Also performing the warm-up with multiple joint movements will better prepare the athlete for the complex movements of sport or training. Dynamic stretching, sometimes referred to as mobility drills, places an emphasis on the movement requirements of the sport or activity rather than on individual muscles. An example would be performing body-weight lunge walking prior to a squat training session. There are endless possibilities for one to dynamically prepare the hips prior to squatting.

For athletes looking to improve their mobility and overall performance in the gym, static stretching should play a minimal, if any, role. Instead, try performing dynamic activity-specific preparatory movements with progressive loading. Performing ten minutes of piriformis and calf muscle stretching will do little to improve performance during a squat session. Instead, include some loaded goblet squats or split squats prior to warming up with the barbell. Increase the load progressively until you reach your working set intensity. With this approach, the dynamic warm-up and start of the training session are continuous and optimal for preparing the body for performance. After putting in the work at the end of the training session, feel free to lie down on the floor and stretch those “tight hamstrings”.

Conclusion

Contrary to popular belief, stretching has no beneficial effects on reducing injury risk and its role in performance enhancement is questionable at best. Athletes should use static stretching sparingly and focus their time and efforts towards more effective injury reduction strategies such as a well-supervised and progressive strength training program. Lying on the floor to stretch certainly feels good but in order to achieve lasting benefits, nothing can replace hard work and sweat in the gym.

References

  1. Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41, 1–11.
  2. Haff, G.G., Triplett, N.T. (2016). Essentials of strength training and conditioning (4th Ed). Champaign, Ill: Human Kinetics.
  3. Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 48, 871–877. http://doi.org/10.1136/bjsports-2013-092538
  4. Peters, J. A., Zwerver, J., Diercks, R. L., Elferink-Gemser, M. T., & Akker-scheek, I. Van Den. (2016). Preventive interventions for tendinopathy: A systematic review. Journal of Science and Medicine in Sport, 19, 205–211.